AI Approaches to Fraud Detection and Risk Management

نویسندگان

  • Tom Fawcett
  • Ira J. Haimowitz
  • Foster J. Provost
  • Salvatore J. Stolfo
چکیده

researchers and practitioners doing work in these three related areas. Risk management, fraud detection, and intrusion detection all involve monitoring the behavior of populations of users (or their accounts) to estimate, plan for, avoid, or detect risk. In his paper, Til Schuermann (Oliver, Wyman, and Company) categorizes risk into market risk, credit risk, and operating risk (or fraud). Similarly, Barry Glasgow (Metropolitan Life Insurance Co.) discusses inherent risk versus fraud. This workshop focused primarily on what might loosely be termed “improper behavior,” which includes fraud, intrusion, delinquency, and account defaulting. However, Glasgow does discuss the estimation of “inherent risk,” which is the bread and butter of insurance firms. Problems of predicting, preventing, and detecting improper behavior share characteristics that complicate the application of existing AI and machine-learning technologies. In particular, these problems often have or require more than one of the following that complicate the technical problem of automatically learning predictive models: large volumes of (historical) data, highly skewed distributions (“improper behavior” occurs far less frequently than “proper behavior”), changing distributions (behaviors change over time), widely varying error costs (in certain contexts, false positive errors are far more costly than false negatives), costs that change over time, adaptation of undesirable behavior to detection techniques, changing patterns of legitimate behavior, the trad■ The 1997 AAAI Workshop on AI Approaches to Fraud Detection and Risk Management brought together over 50 researchers and practitioners to discuss problems of fraud detection, computer intrusion detection, and risk scoring. This article presents highlights, including discussions of problematic issues that are common to these application domains, and proposed solutions that apply a variety of AI techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Fraud and Abuse Detection in General Physician Claims: A Data Mining Study

Background We aimed to identify the indicators of healthcare fraud and abuse in general physicians’ drug prescription claims, and to identify a subset of general physicians that were more likely to have committed fraud and abuse.   Methods We applied data mining approach to a major health insurance organization dataset of private sector general physicians’ prescription claims. It involved 5 ste...

متن کامل

Study of the effect of internal control weaknesses on fraudulent financial reporting risk with considering the moderating role of CEO characteristics

Internal controls play a vital role in prevention of fraud. Internal controls reduce the opportunities for committing fraud. According to information symmetry theory, internal control disclosure the solution is to examine the role of management accountability.  To investigate the subject, based on the probit regression model the data related to the variables is analyzed the period from 2013 to ...

متن کامل

Exploring expectation gap among independent auditors' points of view and university students about importance of fraud risk components

The purpose of this study is exploring expectation gap among university students and auditors points of view about importance of fraud risk components. To get this purpose, university students' ideas and auditors about importance of each mentioned fraud risk components in Iranian auditing standard No. 24 under the title of "the auditor’s responsibilities relating to fraud in an audit of financi...

متن کامل

Presenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm

both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...

متن کامل

Identification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms

In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AI Magazine

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1998